Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | CHEMISTRY 0620/42 Paper 4 Theory (Extended) October/November 2023 1 hour 15 minutes You must answer on the question paper. No additional materials are needed. ## **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do not use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. ## **INFORMATION** - The total mark for this paper is 80. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. 1 Table 1.1 gives the electronic configurations of some atoms and ions, **A** to **G**. Table 1.1 | | electronic configuration | |---|--------------------------| | Α | 2,5 | | В | 2,8 | | С | 2,8,2 | | D | 2,8,4 | | E | 2,8,5 | | F | 2,8,6 | | G | 2,8,18,7 | Answer the following questions about **A** to **G**. Each letter may be used once, more than once or not at all. State which of the atoms or ions, **A** to **G**, could be: | (a) | a noble gas atom | | |------|--|-----| | | | [1] | | (b) | an atom of an element in Group VI | | | | | [1] | | (c) | an atom with an atomic number of 14 | | | | | [1] | | (d) | atoms from the same group | | | | and | [1] | | (e) | a halogen atom | | | | | [1] | | (f) | an atom of an element which is a good conductor of electricity | | | , | | [1] | | (a) | a stable ion of a Group V element | | | (3) | | [1] | | (h) | an atom that forms an ion with a 2– charge. | ۲.1 | | (11) | an atom that forms are for with a 2- charge. | [4] | | | | [י] | [Total: 8] - **2** Cobalt and copper are transition elements. - (a) Copper has two naturally occurring isotopes, ⁶³Cu and ⁶⁵Cu. Cobalt has only one naturally occurring isotope, ⁵⁹Co. - (i) Complete Table 2.1 to show the number of protons, neutrons and electrons in the ⁵⁹Co atom and the ⁶⁵Cu²⁺ ion. Table 2.1 | | ⁵⁹ Co | ⁶⁵ Cu ²⁺ | |-----------|------------------|--------------------------------| | protons | | | | neutrons | | | | electrons | | | [3] (ii) Table 2.2 shows the relative abundance of the two naturally occurring isotopes of copper. Table 2.2 | isotope | ⁶³ Cu | ⁶⁵ Cu | |--------------------|------------------|------------------| | relative abundance | 70% | 30% | Calculate the relative atomic mass of copper to **one** decimal place. | rolotivo | atamic mai | | 1771 | |----------|------------|------|---------| | reiative | atomic mas | 55 — |
121 | **(b)** One physical property of transition elements such as copper and cobalt is that they are hard. Other metals such as lithium are softer. State **two** other physical properties of copper and cobalt which are significantly different from lithium. | 1 | 1 | |---|---| | , | | [2] | (c) | | h copper and cobalt can form coloured compounds. Some of these compounds contain
er of crystallisation. | | | | |-----|-------|--|--|--|--| | | (i) | Define the term water of crystallisation. | | | | | | | | | | | | | | [2] | | | | | | (ii) | State the colour and formula of hydrated $\operatorname{cobalt}(\operatorname{II})$ chloride crystals. | | | | | | | colour | | | | | | | formula[2] | | | | | | (iii) | State the colour change seen when a few drops of water are added to anhydrous copper(II) sulfate. | | | | | | | from to | | | | | (| (iv) | State how this colour change can be reversed. | | | | | | | [1] | | | | | | | [Total: 14] | | | | | 3 | Iron | is m | nanufactured in a blast furnace. | | |---|------|------|--|-----| | | (a) | Thre | ee of the starting materials added to the blast furnace are coke, iron ore and limestone. | | | | | Nan | ne the other starting material added to the blast furnace. | | | | | | [| [1] | | | (b) | The | source of iron in the blast furnace is Fe ₂ O ₃ . Fe ₂ O ₃ is found in iron ore. | | | | | (i) | Name the main ore of iron which contains Fe ₂ O ₃ . | | | | | | [| [1] | | | (| (ii) | The iron in $\mathrm{Fe_2O_3}$ is reduced by reaction with carbon monoxide. The unbalanced symbol equation is shown. | 0 | | | | | Complete the equation. | | | | | | $Fe_2O_3 +CO \rightarrowCO_2 +Fe$ | [1] | | | (i | iii) | State the change in oxidation number of iron in the reaction in (ii). | | | | | | from to | 2 | | | (i | iv) | Explain how the change of oxidation number shows that iron has been reduced. | | | | | | | [1] | | | | | major impurity in iron ore is silicon(IV) oxide. Limestone is added to the blast furnace ove this impurity. | to | | | | | te two symbol equations to show how silicon(${ m IV}$) oxide is removed. For each equation the type of chemical reaction that takes place. | 'n, | | | | equ | ation 1 | | | | | type | e of chemical reaction | | | | | equ | ation 2 | | | | | type | e of chemical reaction | | | | | | | [4] | | (d) | Iro | n is converted to steel by mixing it with carbon and other elements. | |-----|-------|---| | | (i) | State the term given to a substance which is a mixture of a metal and other elements. | | | | [1] | | | (ii) | Name one element, other than carbon, mixed with iron in the making of stainless steel. | | | | [1] | | (e) | Pre | eventing the rusting of steel is important. | | | Sta | ate the chemical name of rust. | | | | [1] | | (f) | | eel can be coated with zinc to prevent rusting. This provides both a barrier method and crificial protection. | | | (i) | State the term used for coating steel with zinc. | | | | [1] | | | (ii) | Describe another barrier method for preventing rusting. | | | | [1] | | | (iii) | Explain how zinc provides sacrificial protection. | | | | | | | | [2] | | | | [Total: 17] | | This question is about lead(II) chloride, PbC l_2 . | | | | | | |---|--|--|--|--|--| | tudent prepares a sample of insoluble lead(II) chloride, ${\sf PbC}l_2$, by mixing aqueous solutions ${\bf wo}$ salts in a beaker. | | | | | | | Identify two soluble salts suitable for making lead(II) chloride when mixed together. | | | | | | | [2] | | | | | | | Write the ionic equation for the formation of lead (II) chloride by mixing aqueous solutions. | | | | | | | Include state symbols. | | | | | | | [3] | | | | | | | List the steps the student should take in preparing a pure sample of lead($\rm II$) chloride from the mixture in the beaker. | (b) The student carries out an electrolysis experiment on molten lead(II) chloride using the apparatus shown in Fig. 4.1. Chlorine gas forms at the anode and escapes from the apparatus. Fig. 4.1 | (i) | Explain why lead(II) chloride needs to be molten before it will conduct electricity. | | |-------|--|-----| | | | | | (ii) | Write the ionic half-equation for the reaction occurring at the anode. | | | | | [2] | | (iii) | State the test for chlorine gas. | | | | test | | | | observations | | | (iv) | Describe what is observed at the cathode. | [2] | | (IV) | Describe what is observed at the cathode. | [1] | | | | ניו | [Total: 14] 5 | Che | emic | al reactions can involve transfer of thermal energy. | |-----|------|--| | (a) | Sta | te the term used for the transfer of thermal energy during a reaction. | | | | [1] | | (b) | Tetr | rachloromethane gas, $CCl_4(g)$, reacts with steam as shown. | | | | $CCl_4(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 4HCl(g)$ | | | The | reaction is reversible. The forward reaction is exothermic. | | | (i) | State what happens, if anything, to the rate of the forward reaction if the concentration of ${\rm CC}l_4$ is increased. Explain your answer in terms of collision theory. | | | | | | | | | | | | | | | | [3] | | | (ii) | State what happens to the position of equilibrium, if anything, when the pressure is increased. Explain your answer. | | | | [2] | (iii) Fig. 5.1 shows an incomplete reaction pathway diagram for the forward reaction. Fig. 5.1 On Fig. 5.1: - insert the formulae of the reactants and products - draw an arrow, labelled $E_{\rm a}$, to show the activation energy draw an arrow, labelled ΔH , to show the transfer of energy in the reaction. [3] (iv) Define the term activation energy. (v) State **one** way in which the activation energy of a reaction can be changed. (c) The equation for the reaction between tetrachloromethane gas and steam can be represented as shown in Fig. 5.2. $$Cl - C - Cl + H - O - H \rightarrow O - C - O + H - Cl + H - Cl + Cl + Cl + Cl + Cl$$ $$Cl - C - Cl + H - Cl + Cl + Cl + Cl$$ $$Cl - Cl - Cl + Cl + Cl + Cl$$ Fig. 5.2 Table 5.1 shows some bond energies. Table 5.1 | bond | C-C1 | H–O | C=O | |-----------------------|------|-----|-----| | bond energy in kJ/mol | 340 | 460 | 805 | Use the bond energies in Table 5.1 and the ΔH value for the reaction to calculate the H–Cl bond energy using the following steps. • Calculate the energy needed to break the bonds in the reactants.kJ • Calculate the energy released when the bonds in carbon dioxide form.kJ • Calculate the H–Cl bond energy.kJ/mol [4] [Total: 16] 6 | | omo
perti | logous series is a family of organic compounds whose members have similar chemical es. | |-----|--------------|---| | (a) | Giv | e two characteristics that are the same for all members of a homologous series. | | | 1 | | | | 2 | [2] | | (b) | | erms of structure, state how one member of a homologous series differs from the next
mber of that homologous series. | | | | [1] | | (c) | A, E | 3 and C are organic compounds. | | | A h | as the molecular formula $C_{12}H_{24}$. | | | B h | as the name tetradecane. | | | | has three carbon atoms and is in the homologous series with the general formula ${\rm H}_{\rm 2n+1}{\rm COOH}.$ | | | (i) | Name the homologous series each organic compound belongs to. | | | | A | | | | В | | | | c [3] | | | (ii) | Name C and draw its displayed formula. | | | | name | | | | displayed formula | (d) Amino acids are a homologous series where each member has the general structure shown in Fig. 6.1. The R side chain contains carbon and hydrogen atoms only. Fig. 6.1 | (i) | An amino acid has a relative molecular mass of 103. | |-----|--| | | Deduce the formula of the R side chain in this amino acid. | | | Show your working. | | | | [2] | |------|---|-----| | (ii) | State the name given to the natural polyamides formed from amino acid monomers. | | | | | [1] | | | [Total: | 11] | The Periodic Table of Elements | | NIII | 2
He | helium
4 | 10 | Ne | neon
20 | 18 | Ā | argon
40 | 36 | 첫 | krypton
84 | 54 | Xe | xenon
131 | 98 | R | radon | 118 | o
O | oganesson
- | |-------|------|---------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | II/ | | | 6 | щ | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | Ŗ | bromine
80 | 53 | Н | iodine
127 | 85 | ¥ | astatine
- | 117 | <u>S</u> | tennessine
- | | | > | | | 80 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | <u>е</u> | tellurium
128 | 84 | Ъ | polonium
– | 116 | ^ | livermorium
– | | | > | | | 7 | z | nitrogen
14 | 15 | ₾ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sp | antimony
122 | 83 | <u>.</u> | bismuth
209 | 115 | Mc | moscovium
- | | | 2 | | | 9 | ပ | carbon
12 | 14 | S | silicon
28 | 32 | Ge | germanium
73 | 20 | Sn | tin
119 | 82 | Pb | lead
207 | 114 | F1 | flerovium
- | | | ≡ | | | 2 | В | boron
11 | 13 | Ρl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 81 | <i>1</i> 1 | thallium
204 | 113 | R | nihonium
– | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | g | cadmium
112 | 80 | Нg | mercury
201 | 112 | ပ် | copernicium
- | | | | | | | | | | | | 59 | J. | copper
64 | 47 | Ag | silver
108 | 79 | Αn | gold
197 | 111 | Rg | roentgenium
- | | Group | | | | | | | | | | 28 | z | nickel
59 | 46 | Pd | palladium
106 | 78 | చ | platinum
195 | 110 | Ds | damstadtium
- | | Ö | | | | 1 | | | | | | 27 | ပိ | cobalt
59 | 45 | 格 | rhodium
103 | 77 | ٦ | iridium
192 | 109 | Ĭ | meitnerium
- | | | | - I | hydrogen
1 | | | | | | | 26 | Fe | iron
56 | 44 | Ru | ruthenium
101 | 92 | Os | osmium
190 | 108 | Η̈́ | hassium | | | | | | | | | 1 | | | 25 | Mn | manganese
55 | 43 | ည | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium
– | | | | | | _ | pol | ass | | | | 24 | ပ် | chromium
52 | 42 | Mo | molybdenum
96 | 74 | > | tungsten
184 | 106 | Sg | seaborgium
- | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | q | niobium
93 | 73 | Б | tantalum
181 | 105 | Q
O | dubnium
- | | | | | | | atc | re | | | | 22 | j | titanium
48 | 40 | Zr | zirconium
91 | 72 | Ξ | hafnium
178 | 104 | 꿉 | rutherfordium
- | | | | | | | | | | | | 21 | Sc | scandium
45 | 39 | > | yftrium
89 | 57–71 | lanthanoids | | 89–103 | actinoids | | | | = | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | Š | strontium
88 | 56 | Ва | barium
137 | 88 | Ra | radium | | | - | | | е | = | lithium
7 | 11 | Na | sodium
23 | 19 | × | potassium
39 | 37 | В | rubidium
85 | 55 | Cs | caesium
133 | 87 | Ļ | francium
— | | 71 | Γn | lutetium | 175 | 103 | ۲ | lawrencium | I | |----|----|------------|-----|-----|-----------|-------------|-----| | 70 | Υp | ytterbium | 173 | 102 | 8
N | nobelium | 1 | | 69 | Tm | thulium | 169 | 101 | Md | mendelevium | 1 | | 89 | Ē | erbinm | 167 | 100 | Fm | fermium | 1 | | 29 | 웃 | holmium | 165 | 66 | Es | einsteinium | I | | 99 | Dy | dysprosium | 163 | 86 | ర్ | californium | 1 | | 65 | ТР | terbium | 159 | 26 | 器 | berkelium | ſ | | 64 | В | gadolinium | 157 | 96 | CB | curium | ſ | | 63 | En | europium | 152 | 92 | Am | americium | 1 | | 62 | Sm | samarium | 150 | 94 | Pu | plutonium | 1 | | 61 | Pm | promethium | ı | 93 | δ | neptunium | 1 | | 09 | βN | neodymium | 144 | 92 | \supset | uranium | 238 | | 29 | Ā | | | | | | | | 28 | Ce | cerium | 140 | 06 | H | thorium | 232 | | 22 | Гa | lanthanum | 139 | 88 | Ac | actinium | I | lanthanoids actinoids The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).